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1. Introduction

In a general sense, a disease is an abnormal condi-
tion of an organism that impairs bodily functions.
Many different factors, intrinsic or extrinsic to a per-
son, plant or animal, can cause disease. Examples of
intrinsic factors are genetic defects or nutritional de-
ficiencies. An environmental exposure, such as sec-

ond-hand smoke, is an example of an extrinsic fac-
tor. Many diseases result from a combination of
intrinsic and extrinsic factors. For some of them, no
cause or set of causes has been identified yet. The
broader body of knowledge about human diseases
and their treatment is medicine. Pathology is the
study and diagnosis of diseases through examination
of organs, tissues, cells and bodily fluids. It can be

# 2009 by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

Journal of 

BIOPHOTONICS

Infrared (IR) and Raman spectroscopy are emerging
biophotonic tools to recognize various diseases. The cur-
rent review gives an overview of the experimental tech-
niques, data-classification algorithms and applications to
assess soft tissues, hard tissues and body fluids. The
methodology section presents the principles to combine
vibrational spectroscopy with microscopy, lateral infor-
mation and fiber-optic probes. A crucial step is the clas-
sification of spectral data by a variety of algorithms. We
discuss unsupervised algorithms such as cluster analysis
or principal component analysis and supervised algo-
rithms such as linear discriminant analysis, soft indepen-
dent modeling of class analogies, artificial neural net-
works support vector machines, Bayesian classification,
partial least-squares regression and ensemble methods.
The selected topics include tumors of epithelial tissue,
brain tumors, prion diseases, bone diseases, atherosclero-
sis, kidney stones and gallstones, skin tumors, diabetes
and osteoarthritis.

A photomicrograph of a histopathologically stained mur-
ine skin tissue section (left) is compared with a color
coded FTIR image of an unstained tissue section (right).
The colors allow distinguishing tumor (red, yellow, or-
ange) and non-tumor portions.
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divided into anatomical pathology and clinical
pathology with the latter also known as laboratory
medicine. Disease diagnosis by anatomical pathology
generally involves gross and microscopic visual ex-
amination of tissues with special stains employed to
visualize specific proteins and other substances. Ru-
dolf Virchow (1821–1902) is generally recognized to
be the father of microscopic pathology. While the
microscope had been invented earlier, Virchow was
one of the first prominent physicians to emphasize
the study of manifestations of disease that were vi-
sible only at the cellular level. Virchow’s student
Julius Cohnheim (1839–1884) combined histologic
techniques with experimental manipulations, making
him one of the first experimental pathologists. Cohn-
heim also pioneered the use of the frozen section. A
version of this technique is still widely employed by
modern pathologists to render diagnosis and provide
other clinical information. New research techniques,
such as electron microscopy, immunohistochemistry
and molecular biology have expanded the means by
which biomedical scientists can study disease.

Numerous developments in spectrometer and
computer techniques within the past decade have en-
abled significant progress of IR and Raman spectro-
scopy in biological and life sciences. They provide a
wealth of information on the cellular and molecular
level from solid and liquid specimens without using
external agents such as dyes, stains or radioactive
labels. Their principle is that they probe molecular
vibrations that depend on the composition and struc-
ture of the samples. Diseases and other pathological
anomalies lead to chemical and structural changes
that also change the vibrational spectra and that can
be used as sensitive, phenotypic markers of the dis-
ease. Another feature which makes them attractive
for modern clinical laboratories is that both methods
can be automated. Recent reviews described several
aspects in the field of IR and Raman spectroscopy
such as biomedical applications to diagnose tissues
[1], chemical imaging of biological tissue with syn-
chrotron IR radiation [2], clinical and diagnostic ap-
plications [3], metabolic fingerprinting [4] and nonin-
vasive biochemical analysis of single cells [5]. The
progress in vibrational spectroscopy for medical di-
agnosis was summarized in a book that was divided
into chapters about (i) the diagnosis of lymph nodes,
(ii) individual human cells, (iii) micro-organisms, (iv)
transmissible spongiform encephalopathy, (v) head
and neck cancer, (vi) high-throughput histopathol-
ogy, (vii) human cervix, (viii) esophageal and blad-
der, (ix) neuro-oncology and (x) erythrocytes [6].
The current review gives first an overview of the
methods for data acquisition and data classification.
Then frequent diseases that have been studied by
Raman- and IR-based techniques are summarized,
focusing on recognition of epithelial tumors, brain
tumors, prion diseases, bone diseases, atherosclero-

sis, kidney stones and gallstones, skin tumors, dia-
betes and osteoarthritis.

2. Methodical overview

2.1 FTIR spectroscopy

Due to the high water content of cells, tissues and
body fluids and the strong absorption of mid-IR ra-
diation by water, the penetration depth is limited to
a few micrometers. Whereas cells are sufficiently
thin and fluids can be filled in cuvettes with 5 to
10 mm path length, tissue samples for most mid-IR
spectroscopic studies in transmission mode are cut in
5- to 20-mm thick sections, transferred onto mid-IR
transparent substrates such as calcium fluoride or
barium fluoride and subsequently dried. Highly re-
flective, metal-coated glass slides constitute a less
expensive alternative class of substrates from which
IR spectra can be collected in so-called reflection
absorption mode [7]. Attenuated total reflection
(ATR) offers another way in IR spectroscopy to re-
cord spectra from nontransparent biomedical sam-
ples [8]. At the interface between an ATR crystal of
high refractive index and the sample of lower refrac-
tive index, an evanescent wave penetrates a few mi-
crometers into the sample. ATR crystals are made of
mid-IR transparent materials such as zinc selenide,
germanium, or diamond. The effective depth of pe-
netration using the ATR principle is enhanced by
multiple internal reflections. Periodic total reflec-
tions form the basis to guide radiation through opti-
cal fibers. Mid-IR transparent fibers have been fabri-
cated using silver halides, tellurium halides and
chalcogenides [9]. It has been demonstrated that un-
coated fibers made of these materials can be coupled
to IR spectrometers for collection of ATR spectra of
aqueous body fluids such as urine [10].

Whereas most Raman spectrometers operate in a
dispersive mode, mid-IR spectrometers use the inter-
ferometric Fourier-transform (FT) principle, which
has the multiplex, throughput and wave number
accuracy advantages. The basic setup consists of a
broadband radiation source, an interferometer, a
sample chamber, which can also be a microscope,
and a fast detector. Many applications in microscopic
pathology require the acquisition of images. The
spectroscopic data can be combined with the lateral
information in FTIR spectrometers with single-chan-
nel detectors by restricting radiation at the sample
plane with an aperture and scanning this aperture
over the area of interest with an automated transla-
tion stage. According to Abbe’s law d ¼ 0.612 l/NA
the resolution d in spectroscopic imaging is limited
by diffraction (wavelength l and numerical aperture
NA of the microscope objective). In practice, the lat-
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eral resolution is often limited by the radiation from
the light source rather than by the diffraction limit.
To optimize the sensitivity in combination with mi-
croscope apertures near the diffraction limit, high-
brilliance IR radiation from synchrotron sources is
used instead of IR radiation from thermal illumina-
tion sources in standard FTIR spectrometers. As
typical Cassegrain IR objectives have NA between
0.4 and 0.6, the diffraction limit is of the order of the
wavelength of mid-IR radiation of 2.5 to 25 mm,
which coincide with experimentally determined
values [11].

FTIR spectrometers with multichannel detectors,
termed focal plane array (FPA) detectors, offer an-
other way to collect FTIR images. The entire field
of view is illuminated and imaged on such an FPA
detector that segments radiation at the detection
plane. Without apertures and moving the samples,
the lateral information is collected in parallel,
whereas the spectral information is serially obtained
by operating the interferometer in a special collec-
tion mode. The main advantage of FTIR spectro-
meters with multichannel detection is that an entire
image can be acquired in a time comparable with
acquiring a single spectrum conventionally. The
field of view per image encompasses up to
4 mm � 4 mm, each image contains up to 4096 indi-
vidual spectra and a single image can be acquired
in less than a minute. As a less expensive alterna-
tive to 64 � 64 FPA detectors, 16 � 1 linear detector
arrays are used to collect FTIR images by scanning
this small multichannel detector over the area of in-
terest with an automated translation stage. How-
ever, using a smaller FPA also diminishes the acqui-
sition speed and the throughput advantage of FTIR
imaging spectrometers.

2.2 Raman spectroscopy

The basic setup of a dispersive Raman spectrometer
consists of a laser as an intense and monochromatic
light source, a device that separates the elastically
(Rayleigh) scattered light of the sample from the
(Raman) inelastically scattered light, a spectrograph
and a detector. Multichannel detectors enable regis-
tration of the whole Raman spectrum simultaneously
within a fraction of a second. Due to the problem of
intense autofluorescence that often masks the Ra-
man signals, Raman spectra of unprocessed biologi-
cal material are usually excited with near-IR lasers
[12]. As most tissues and body fluids show minimum
absorption in the wavelength interval from 700 to
900 nm, the excited autofluorescence is at a mini-
mum, and the penetration of the exciting radiation
and the scattered radiation is at a maximum. Fluor-
escence in Raman spectra from biological samples

can also be avoided by laser excitation in the deep
UV because a fluorescence-free window exists with
excitation below 270 nm. However, deep-UV excita-
tion also harbors the risk of inducing photodegrada-
tion damage. The inherent weak Raman intensities
of biomolecules require the use of high-throughput
optics and sensitivity-optimized detectors. Raman
spectrometers are coupled to microscopes for high
lateral resolution and to fiber-optic probes for re-
mote, minimal-invasive and in-vivo applications. Be-
cause the wavelength is shorter and the NA of mi-
croscope objectives is larger, the diffraction limit of
Raman microscopy is below 1 mm and higher lateral
resolution can be achieved than in FTIR microscopy.

Most Raman images are collected in the point-
mapping mode. Here, the laser is focused onto the
sample, the scattered light is registered, and subse-
quently the focus or the sample is moved to the next
position. In the case of laser-line illumination of the
sample, the spatial data can be registered on the de-
tector on a line parallel to the entrance slit of the
spectrometer and the spectral information is dis-
persed perpendicularly. The second spatial dimen-
sion of an image is recorded by scanning in the di-
rection perpendicular to that line. This so-called line-
mapping registration mode is faster because only
one dimension instead of two dimensions in the
point-mapping mode has to be scanned. The parallel
registration approaches called direct or wide-field
Raman imaging employs intense, global sample illu-
mination. The inelastically scattered light from the
sample is projected onto a two-dimensional CCD de-
tector. Most wide-field Raman imaging spectro-
meters use filters to select the wavelength such as di-
electric, acousto-optic tunable and liquid-crystal
tunable filters. Although Raman spectrometers using
this principle are commercially available, applica-
tions in disease recognition have not been reported
yet. The three Raman imaging modalities have been
compared with respect to acquisition times, image
quality, spatial resolution, intensity profiles along
spatial coordinates and spectral signal-to-noise ratios
[13].

In-vivo diagnostic tools are much needed in many
fields of medicine such as the guidance of surgical
interventions to delineate lesion margins or to re-
place random biopsies of suspicious tissues by tar-
geted biopsies that, in turn, would reduce unneces-
sary tissue excisions, pathology costs and biop-
sy-associated risks. Among several optical methods
currently under investigation for improvement of
in-vivo endoscopic applications, such as elastic light
scattering, optical coherence tomography and fluo-
rescence spectroscopy, Raman spectroscopy offers
the advantage of high molecular specificity. Several
probe geometries have been designed for use with
Raman spectrometers. A miniaturized probe that
consisted of one central excitation fiber, six sur-
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rounding collection fibers, internal in the tip filters
and beveled fiber ends for optimized light collecting
efficiency was designed [14] and applied in various
biomedical studies [15–20]. Other Raman probes
that are, however, not commercially available use 15
fibers and a ball lens [21], six fibers [22] or one fiber
for signal collection [23–25]. A probe with inte-
grated filters, one excitation and one collection fiber
each from Inphotonics Inc. (USA) was recently ap-
plied to record Raman images of murine brains [26].
However, probe dimensions (13 mm diameter,
100 mm length) are probably too large for endo-
scopic applications. A small, unfiltered probe was
suggested as an alternative, because silica with a low
content of hydroxyl groups as core material shows
only low spectral contributions in the high wave
number region from 2400 to 3800 cm�1 [27]. Other
new developments include the PhAT probe from
Kaiser Optical Systems (USA) with global illumina-
tion and an array of 50 collection fibers [26], hollow-
core photonic crystal fiber-optic probes [28] and con-
centric rings of optical fibers used in spatially offset
Raman spectroscopy [29].

3. Supervised and unsupervised algorithms
for data analysis

The main objective of classification procedures is to
assign samples or data to one of a number of prior
known groups or classes. Supervised approaches use
reference knowledge, i.e. class membership of train-
ing data. The training process yields a model that is
subsequently applied to new data and returns their
class membership. If reference information is not
available, the data can be grouped according to simi-

larity. Cluster analyses belong to these so-called un-
supervised approaches. If vibrational spectra are
considered as a fingerprint, then the key to classify
diseases based on vibrational spectroscopy is to re-
cognize the pattern of the fingerprint. In the context
of IR and Raman spectroscopy several algorithms
have been applied so far that will be summarized
next. In a general sense, spectral data sets can be
considered as a point cloud in a multidimensional
space. Simple examples of each dimension are the
IR absorbance or Raman scattering intensity at a
particular wave number, intensity ratios or peak
widths. More complex features that can be extracted
from a set of spectra as described below are princi-
pal components (PCs). A number of data points in a
two-dimensional space is displayed in Figure 1. The
ellipsoids in Figure 1a indicate the covariance within
each class. Methods using Mahalanobis distance,
principal component analysis (PCA), linear discrimi-
nant analysis (LDA) and partial least-squares regres-
sion (PLS) share the common idea to project the ori-
ginal data into a new coordinate system so that the
covariance structures become unit matrices as shown
in Figure 1b.

3.1. Mahalanobis distance

The Mahalanobis distance measures distances in
units of standard deviation. Therefore, it can be used
to determine the distance between a point and group
or class of points. The calculation projects the data
set into a new coordinate system so that the new
point cloud has unit covariance, i.e. the directions
are uncorrelated and have variance one. This projec-
tion is achieved by a linear combination of the origi-

Figure 1 Principle of coordinate system transformation: (a) data classes (þ) and (x) in original space with covariance ma-
trices (ellipses) around class means (large X); (b) data set in new coordinate system with unit covariance matrices (circles)
(b). The LDA discrimination plane is orthogonal to the line through the class means (b). This linear function is trans-
formed back into the original coordinate system (a).
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nal coordinate axis (e.g. the intensity or absorbance
at wave numbers where the spectrum is measured).
The Euclidean distance in this new coordinate sys-
tem is the Mahalanobis distance.

3.2. Principal component analysis and soft
independent modeling of class analogies

In principal component analysis, this projection is
applied to the whole data set without any knowledge
about groups. Therefore, it belongs to the unsuper-
vised data analysis techniques. The new coordinate
axes are commonly termed principal components
(PCs) or loadings that are uncorrelated or orthogo-
nal to each other. The values for each PC are called
scores in the new coordinate system. PCs are or-
dered so that PC1 exhibits the greatest amount of
variation, PC2 the second greatest amount of varia-
tion and so on. In this way PCA allows as much as
possible of the variance in the data set to be de-
scribed by the first significant PCs, while all subse-
quent PCs are so low as to be virtually negligible.
For spectroscopic data, the latter PCs are dominated
by noise. Therefore, PCA can be used for feature re-
duction [30]. Furthermore, score plots of PCA are
used for visualization of data sets for skin tumors
[31] and for discrimination of aorta tissues [32].

In order to build classification models according
to the SIMCA algorithm (soft independent modeling
of class analogies), the objects belonging to each
class need to be analyzed using PCA. Only the sig-
nificant PCs are retained. For a given class, the re-
sulting model then describes either a line (for one
PC), plane (for two PCs) or hyperplane (for more
than two PCs). For each modeled class, the mean
orthogonal distance of training data objects from the
line, plane or hyperplane is used to determine a criti-
cal distance for classification. New unknown objects
are projected into each PC model and the residual
distance is calculated. An object is assigned to the
model class when its residual distance from the mod-
el is below the statistical limit for the class. FTIR
images of brain metastases have recently been as-
signed to the primary tumor by SIMCA [33].

3.3 Cluster analysis

In general, clustering is the partitioning of a data set
into subsets (the clusters) so that the differences be-
tween the data within each cluster are minimized
and the differences between clusters are maximized
according to some defined distance measure. K
means clustering groups the data set into a given

number (K) of clusters. The initial centroids are ran-
domly chosen. Then each spectrum is assigned to the
cluster whose centroid is nearest. New centroids are
computed, being the average of all spectra in the
cluster. The two previous steps are repeated until
the solution converges. The results of the K-means
cluster analysis are the centers of each cluster and
the cluster membership map. The K-means cluster
analysis is often applied to segment IR and Raman
spectra directly [26]. But scores of PCA-transformed
IR [35] and Raman data sets [36] can also be used
as input.

The hierarchical cluster analysis (HCA) calcu-
lates the symmetric distance matrix (size n � n) be-
tween all considered spectra (number n) as a mea-
sure of their pairwise similarity. The algorithm then
searches for the minimum distance, collects the two
most similar spectra into a first cluster and recalcu-
lates spectral distances between all remaining spec-
tra and the first cluster. In the next step the algo-
rithm performs a new search for the most similar
objects that now can be spectra or clusters. This
iterative process is repeated n � 1 times until all
spectra have been merged into one cluster. The re-
sult is displayed in a tree-like, two-dimensional den-
drogram in which one axis refers to the reduction of
clusters with increasing number of iterations and the
other axis to the respective spectral distances. Both
clustering algorithms were compared with fuzzy
C-means clustering, which is a third, less frequently
used clustering algorithm, in the context of FTIR
imaging of colorectal adenocarcinoma [37]. HCA are
applied directly to spectra or to cluster centroids,
which can be obtained by K-means or fuzzy cluster-
ing. The latter was used to segment FTIR images of
cervical cancer [38].

3.4 Linear discriminant analysis

A number of objects belong exactly to one out of k
similar classes and the class membership is known for
each object. Each object is defined by characteristic
parameters. LDA uses this information to calculate
(k � 1) linear discriminant functions that optimally
discriminate k classes. LDA uses these functions to
assign unknown objects to classes. The discriminant
functions describe a separation hyperplane. The nor-
mal vector of this separation plane is the direction
that maximizes the ratio of the difference between
classes (interclass variance) to the differences within
the classes (intraclass variance). This direction of the
vector is simply the direction that connects the class
means if the intraclass variance is one in all direc-
tions, i.e. if the intraclass covariance matrix is the
unity matrix (compare Figure 1b). LDA classification
is based on the Mahalanobis distance that is derived
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from a common covariance matrix for all classes,
while quadratic discriminant analysis (QDA) classifi-
cation is based on a Mahalanobis distance that is
based on class-specific covariance matrices.

LDA using spectral band ratios as parameters
was applied to distinguish FTIR images of normal
brain tissue and primary brain tumors [39] and FTIR
images of normal brain tissue and brain metastases
originating from different primary tumors [40]. LDA
using PCs as input was applied to identify Raman
spectra of epithelial tumors [16, 41, 42]. LDA and
QDA based on optimally selected spectral regions
were compared to classify IR spectra of exfoliated
cervical cell specimens [43].

3.5 Partial least-squares regression

PCA, LDA, and PLS use a common transformation
principle that is based on calculation of the Mahala-
nobis distance. Whereas LDA is the supervised clas-
sification analogue to PCA, PLS is the supervised re-
gression analogue. PLS regression is based on
factorization of matrices, which can be performed by
PCA. PLS models are developed for the indepen-
dent variables (e.g. concentration) as well as for the
dependent variables (e.g. absorbance) based on PCs.
Both results constitute the external relations. An in-
ternal relation realizes a correlation between inde-
pendent and dependent variables. PLS regression
models were developed for quantitative analysis of
serum by Raman spectroscopy [44] and body fluids
by IR spectroscopy [45].

3.6 Artificial neural networks

ANNs offer a flexible way to model nonlinear func-
tions. Backpropagation ANNs are constructed with a
layered structure in which each node is connected to
all nodes of the previous and the next layer with dif-
ferent weights. The input layer (a node for each wa-
velength or feature) and the output layer (one node
per class) are commonly connected by a single hid-
den layer. The input to each node is the linear com-
bination of the outputs of the previous layer using
the respective weights for the connections. Each
node consists of an activation function that is most
commonly of sigmoid or Gaussian shape. The output
of the node is the result of the activation function
for the input value. ANNs were used with extended
spectral ranges as well as PCs to identify lesions in
breast tissue [46]. ANN using a three-layer feed for-
ward network [47] and ANN using top level and
sublevel networks [48] identified scrapie infection
from IR spectra of blood serum.

3.7 Bayes rule

Bayes classification rule is based on the use of a
learning algorithm and a probabilistic determination
to relate a small number of spectral metrics to speci-
fic histologic entities. According to the Bayes rule a
sample should be assigned to the class that is most
likely given the particular observation (i.e. the spec-
trum). As a prerequisite the conditional probabilities
of the classes need to be known. These probabilities
might be directly estimated from the distribution of
the data along the used features. Bayesian classifica-
tion has been suggested for high-throughput assess-
ment of FTIR images from prostate tissue [49, 50].

3.8 Support vector machines

SVM use spectra close to the class borders as sup-
port vectors to define the discriminant surface. SVM
enlarge the feature space so that nonlinear class
boundaries (in the original feature space) can be
modeled. SVM were applied as a member of ensem-
ble methods for the identification of bovine spongi-
form encephalopathy by IR spectra of serum [51].

3.9 Ensemble methods

If the classifiers lack stability, models can be im-
proved by ensemble methods, a process that is also
known as aggregation. The idea is to combine the
predictions of a number of different classifiers into a
new prediction. LDA, PCA-based LDA, SVM and
ANN were averaged to obtain a classification result
for BSE by IR spectra of serum [51]. Another way
to form an ensemble of models for aggregation uses
the same method, but with slight variations of train-
ing data. This principle was demonstrated for LDA
classification of FTIR images from brain tumors in
small sample size situations [52]. A combination of
the output of different classification methods (PLS,
LDA, principal component regression, ridge regres-
sion) also including aggregated decision trees (ran-
dom forest model) were applied to identify BSE by
IR spectra of serum [53].

4 Selected applications

4.1 Tumors of epithelial tissue

Epithelium is the collective term for cover and
glandular tissue. It is composed of layers of cells that
line the outside and inside surfaces of organs. As the
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epithelium covers the surface of organs it is exposed
to the environment and is in contact with a broad
range of potentially aggressive or harmful chemical
and physical conditions that can induce a deregu-
lation of cells division. Therefore, tumors of the
epithelium – usually called carcinomas – are among
the most common forms of cancer. FTIR and Ra-
man studies included carcinomas of the prostate, cer-
vix uteri, skin, breast, colon, esophagus, bladder and
oral mucosa.

Prostate carcinoma was selected as an application
to demonstrate that a combination of FTIR imaging,
tissue microarrays and fast numerical analysis en-
ables rapid histopathological recognition [49, 50, 54].
FTIR imaging permits rapid recording of data from
large numbers of tissue samples. Tissue microarrays
consist of multiple tissue samples of uniform dimen-
sions placed on a single substrate. This arrangement
facilitates identical processing for all samples after
constructing the array. Arrays of 12 � 8 biopsies with
500 mm diameter were prepared. High-throughput
assessment of tissue sections was achieved in these
studies by a metric Bayes classification.

One field of research that has received substan-
tial attention in the last decade was the application
of FTIR and Raman spectroscopy to gynecological
screening for cervical dysplasia and malignancies
[reviews: 55–57]. Dysplasia is a term used in pathol-
ogy to refer to an abnormality in maturation of cells
within a tissue. It is often indicative for an early neo-
plastic process. The currently accepted technique for
diagnosing exfoliated cells is the Papanicolaou (Pap)
smear test where cells are collected from the cervical
transformation zone and stained with the Pap stain.
Despite its success, cytological screening by the Pap
smear test has limitations, the most important being
high numbers of false-negative results. Therefore,
since the pioneering work by Wong and coworkers
in the early 1990s [58], the main objective has been
to improve the diagnostic accuracy of the Pap smear
by FTIR spectroscopy of exfoliated cervical cells
[43]. The focus of the Raman spectroscopic research
on cervical tissue was in-vivo assessment of squa-
mous dysplasia by fiber-optic probes [24]. Cervical
tissue sections have been studied independently by
three groups using FTIR imaging [38, 59, 60].

Whereas tissue sections are prepared for IR spec-
troscopy, biopsy blocks of epithelial tissues, precan-
cers and cancers from the larynx, tonsil, oesophagus,
stomach, bladder and prostate could be studied by
near-infrared Raman spectroscopy [41, 42, 61]. Data
were classified by principal-component-fed linear
discriminant models.

Epithelial tissue such as oesophagus and oral mu-
cosa was also a target to collect Raman spectra by
fiber-optic probes. Raman spectra of the rat esopha-
gus were collected ex-vivo with three different fiber-
optic probes in order to mimic instrument calibra-

tion, probe-to-probe and day-to-day variations [18].
Raman spectra of the rat palate were collected even
under in-vivo conditions [16]. Dysplasia in the
epithelium of the rat palate was induced by topical
application of a carcinogen.

4.2 Brain tumors and neurodegenerative
diseases

There are at least 1000 diseases that can affect the
nervous system, and approximately one in three peo-
ple will be affected by one of them at some point in
life. The seriousness of these diseases has led to a
large emphasis on research into their causes, diag-
noses, therapies and prevention. In the context of
brain tissue, IR and Raman spectroscopy were ap-
plied to primary brain tumors, secondary brain tu-
mors [62] and neurodegenerative diseases that are
induced by prions [63].

Whereas primary brain tumors originate from
cells within the brain, secondary brain tumors are
metastases from primary tumors outside the brain.
Two classification models were developed to deter-
mine the primary tumor of brain metastases based
on FTIR imaging [34, 40]. The first model extracted
nine variables from IR training spectra and used the
algorithm linear discriminant analysis (LDA) to as-
sign test spectra. The second model performed a
principal component analysis from FTIR training
images and used the algorithm soft independent
modeling of class analogies to assign FTIR images.
Another LDA model required only three variables
to recognize FTIR images of malignant gliomas, the
most frequent primary brain tumors [39].

Brain tumors can be induced in rats and mice by
injection of tumors cells directly into the brain or
into the carotid artery. Tissue samples from these an-
imal models were studied by IR spectroscopy [35,
64] and Raman spectroscopy [26, 36]. Raman images
were collected from brain-tissue blocks using a fiber-
optic probe and a motorized stage [26]. Figure 2
shows photographs, Raman images and Raman spec-
tra that were collected from nondried tissues with
the same system. Normal brain tissue can clearly be
distinguished from a brain metastasis of lung cancer
by different spectral contributions due to protein,
lipids, water, hemoglobin and carotene. Brain metas-
tases of malignant melanomas were sensitively
detected because the spectral contributions of the
pigment melanin were resonance enhanced [26].

FTIR microspectroscopy of prion diseases has
been recently reviewed [65, 66]. This method was
proposed to identify prion-affected nervous cells or
tissues due to its ability to detect localized changes
in structure and composition of disease-associated
prion protein PrPsc. It was illustrated on how the ap-
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plication of brilliant IR synchrotron light sources can
improve the lateral resolution and subsequently the
detection limit in the context of prion diseases [67].

Prion disease was identified antemortem in bo-
vine spongiform encephalopathy (BSE) infected cat-
tle [51, 68] and hamsters [47, 48] by a combination
of IR spectra from sera and advanced methods of
pattern recognition. The experimental findings indi-
cated the presence of distinct surrogate markers in
the sera rather than the direct detection of the
pathological prion protein. Spectral features that
were selected based on the calculation of the covar-
iance of the spectral points were used as input for
the artificial neural network (ANN) classification
[47]. Another approach selected features based on
a stochastic search and optimization algorithm – a
so-called genetic algorithm. The 20 most suitable
features were used for classification by linear or
quadratic discriminant analysis [68]. An approach
called diagnostic pattern recognition (DPR) com-
bined four mathematical classification approaches
(principal component analysis plus linear discrimi-
nant analysis, robust linear discriminant analysis, ar-
tificial neural network and support vector machine).
DPR-analysis of IR spectra confirmed the reliable
assignment to the classes BSE-positive or BSE-ne-
gative [51].

4.3 Bone diseases

Mineralized biological samples are composed of an
inorganic matrix (calciumphosphate) and an organic
matrix consisting predominantly of collagen type 1
and cells. The use of IR spectroscopy, microspectro-
scopy and microspectroscopic imaging to probe the

composition and physicochemical status of mineral
and matrix of bone in health and disease has been
reviewed [69]. In contrast to conventional histologi-
cal techniques, vibrational spectroscopic methods do
not require a special sample preparation, e.g. homo-
genization, decalcification, extraction or dilution.
They enable investigation of hard tissue under na-
tive conditions. IR studies of bone-related diseases
include osteoporosis [70, 71] and osteomalacia [72].
In osteoporosis the bone mineral density is reduced,
bone microarchitecture is disrupted and the amount
and variety of noncollagenous proteins in bone is
altered that all lead to an increased risk of fracture.
Osteomalacia is the general term for the softening
of the bone due to defective bone mineralization.
Many of the effects of the disease overlap with the
more common osteoporosis, but the two diseases
are significantly different. Raman spectroscopy was
applied to craniosynostosis [73, 74], which is an ab-
normal condition of bones making up the skull. Re-
cently, the first transcutaneous Raman spectrum of
human bone in vivo has been obtained at skin-safe
laser illumination levels using spatially offset Ra-
man spectroscopy [30]. This technique, which is
based on collecting Raman spectra away from the
point of laser illumination using concentric rings of
optical fibers, provides chemically specific informa-
tion on deep layers of human tissue well beyond
the reach of existing comparative approaches. Mi-
crodamages in bone were investigated both by
FTIR imaging [75] and Raman imaging [76]. An-
other interesting application of Raman spectroscopy
is the detection of dental caries in teeth. While opti-
cal coherence tomography was used to screen car-
ious sites and to determine lesion depth, fiber-opti-
cal Raman spectroscopy provided biochemical
confirmation of caries [77].

Figure 2 (online colour at:
www.biophotonics-journal.org)
Photographs and Raman imaging
of non-dried normal brain tissue (a,
b) and a brain metastasis of lung
cancer (c, d). Raman images were
segmented into three clusters by
k-means cluster analyses. Raman
spectra of the light green (solid in
(e)), dark green (dashed in (e)),
red (solid in (f)) and orange clusters
(dashed in (f)). Spectral contribu-
tions due to proteins, lipids, hemo-
globin, carotene and water differ
throughout the spectra.
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4.4 Atherosclerosis

Atherosclerosis is a disease affecting arterial blood
vessels. The atherosclerotic plaque is divided into (i)
the atheroma that is composed of macrophages near-
est the lumen of the artery, (ii) underlying areas of
cholesterol crystals, and (iii) calcification at the outer
base of older and more advanced lesions, respec-
tively. Previous research has suggested that the mi-
croscopic morphology and chemical composition
rather than the anatomy of an atherosclerotic plaque
determine plaque stability and disease progression.
For this reason, FTIR spectroscopy was applied to
obtain both chemical and spatial information on the
distribution of different components within athero-
sclerotic arteries. Whereas one study [78] examined
atherosclerotic human artery under moist conditions,
other studies detected the calcification in thin dried
sections of rabbit aortas both in transmission mode
[79–81] and micro-ATR reflection mode [82].

Developments of compact clinical Raman sys-
tems, specially developed Raman catheters and fu-
ture directions of Raman spectroscopy in cardiovas-
cular medicine have been summarized [83]. The
performance of a fiber-optic probe was tested in vi-
tro with aorta tissue [21]. Raman maps of human
atherosclerotic plaques were generated to investigate
the chemical composition of the pigment ceroid in
cross sections of the intimal surface [84] and to in-
vestigate plaque development in mice [85]. Compact
clinical Raman systems and dedicated, miniaturized
fiber-optic Raman catheters with a side-viewing geo-
metry were used ex vivo in human coronary arteries
[86] and in vivo in lambs and sheep to illuminate the
blood vessel wall and to collect Raman scattered
light [17]. The in-vivo intravascular Raman signal
obtained from a blood vessel was found to be a sim-
ple summation of signal contributions of the blood
vessel wall and of blood. Therefore, algorithms pre-
viously developed from single-point Raman spectra
[87] could be adapted to extract information about
the chemical composition of blood vessel walls from
in-vivo Raman spectra.

4.5 Kidney stones and gallstones

Kidney stones and gallstones are common diseases
worldwide. Approximately 5% of the population will
suffer from kidney stones at some point in their life.
10 to 15% of the population carries gallstones that
stay asymptomatic in most cases (ca. 75%). About
70% of all kidney stones are composed of calcium
oxalate, and small amounts of calcium hydroxyapa-
tite, uric acid and magnesium ammonium phosphate.
Other types of stones consist of 50% hydroxyapatite

or calcium monohydrogen phosphate or are com-
posed of cystine. Gallstones are commonly classified
into three classes: cholesterol (white), pigment
(black) and mixed (brown) stones. Each type of
stones has its own treatment regimens. Determina-
tion of composition is one fundamental part in estab-
lishing the cause and likelihood of recurrence of
stones, as well as an appropriate treatment. Few Ra-
man spectroscopic studies on gallstones [88, 89] and
kidney stones [90–92] and many IR spectroscopic
studies on gallstones [93, 94] and kidney stones [95–
97] demonstrated that vibrational spectroscopy deli-
vers useful information on the stones structure and
composition. The investigation is direct, fast, and
nondestructive, and does not require tedious sample
preparation. There are at least two approaches to
the quantitative analysis of the stone composition.
PLS techniques will yield highly precise results if the
composition of the unknown material is restricted to
a reasonably well-defined range, with predictable
components present. Another approach is based on
supervised methods or on library searching. An un-
known sample spectrum is then compared to a num-
ber of well-assigned library spectra and the best cor-
related spectrum is found. In particular, Raman
spectroscopy is well suited to detect phosphate-type
kidney stones because the main constituent hydro-
xyapatite has a distinctive line at 961 cm�1 that can
be used as a marker band. Although most reports in
the literature are aimed on the investigations of gall-
stones from adults the analysis of children is impor-
tant as well due to the growing number of cases. Re-
cently, it was demonstrated by IR spectroscopy that
the composition of black and brown stones from
both children and adults are similar [98]. Surpris-
ingly, the results suggest that the risk factors and the
mechanism responsible for stone formation might
also be the same in both children and adults.

4.6 Skin tumors

Skin tumors that include squamous cell carcinoma,
malignant melanoma and basal cell carcinoma
(BCC), are the cancers with the highest incidence
worldwide. Understanding the molecular, cellular
and tissue changes that occur during skin carcino-
genesis is central to cancer research in dermatology.
As for many other tissues, vibrational spectroscopy
has been used to evaluate these changes [review:
99]. An example of skin tissue characterization by
FTIR imaging is shown in Figure 3. Beside the clear
classification of the tumor in the top part, the detec-
tion of tumor within connective tissue is particular
impressive, since these tumor cells are usually diffi-
cult to identify in the stained tissue section. BCC is
the most common cancer of the skin. Raman images

J. Biophoton. 2, No. 1–2 (2009) 21

REVIEWREVIEW
ARTICLEARTICLE

# 2009 by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheimwww.biophotonics-journal.org



were acquired form fifteen sections of BCC and
compared with histopathology [100]. In this sample
set, 100% sensitivity and 93% selectivity were de-
monstrated. Pigmented levi, which belong to benign
skin lesions, were distinguished from malignant skin
lesions in thin sections of biopsies by FTIR imaging
[101]. Melanoma is the most aggressive skin cancer
and is invariably fatal if left untreated. Melanoma
removal at an early stage is almost always curative,
leading to a good prognosis for the patient. Melano-
ma, pigmented nevi, BCC, seborrheic keratoses and
normal skin were studied by Raman spectroscopy
[102]. The sensitivity and specificity of an artificial
neural network classification for diagnosis of mela-
noma were 85% and 99%, respectively. IR spectro-
scopy was used to explore distinctive characteristics
of BCC versus normal skin samples and other skin
neoplasms such as squamous cell carcinoma, nevi
and malignant melanoma [103]. This study combined
LDA with a routine to optimally select wave-number
regions for classification. Recently it was demon-
strated that micro-Raman imaging is also well suita-
ble to distinguish between normal and malignant
skin cells at a subcellular level [104]. The Raman
scattering was excited at 633 and 515 nm. An excita-
tion power of less than 2 mW ensures that cells were
not damaged. The potential of Raman spectroscopy
as a tool for skin studies is now being realized by
dedicated spectrometers which three groups have in-
dependently developed [105, River Diagnostics NL,
Pharmanex USA].

4.7 Diabetes

The IR-based analytical method for consideration as
clinical assay is a field that has been pioneered by
Mantsch and coworkers [106]. Recent reviews also

included Raman-based techniques in this field [4,
107]. A number of common clinical chemistry tests
have proven to be feasible using these approaches.
Among the most important applications is the fast
and reliable determination of the glucose level in the
blood of diabetes patients. Normally, the glucose le-
vel is tightly regulated in the human body. Failure to
maintain blood glucose in the normal range between
70 and 150 mg/dL leads to conditions of persistently
high (hyperglycemia) or low (hypoglycemia) blood
sugar. Diabetes mellitus, which is characterized by
persistent hyperglycemia of several causes, is the
most prominent disease related to failure of blood-
sugar regulation. A spectroscopic method based on
ATR-FTIR spectroscopy has been developed for re-
agent-free analysis of blood and urine constituents
[45]. Blood plasma, whole blood and urine were ana-
lyzed in sample volumes as small as 5 mL without
any sample preparation such as drying or enrich-
ment. Partial least-squares regression was used as a
mathematical model to construct a prediction model
that could calculate the concentration of glucose, the
protein albumin, total protein, cholesterol, urea and
triglycerides in whole blood or blood plasma sam-
ples, and the concentration of urea, uric acid, phos-
phate and creatinine in urine samples. The absolute
precision and reproducibility of the prediction
reached was sufficient for routine clinical analysis
and was only limited by the precision of the refer-
ence analysis used for calibration.

Raman spectroscopy was explored as a reagent-
free tool for predicting the concentrations of differ-
ent parameters in blood serum and serum ultrafil-
trate [44]. In an investigation using samples from
247 blood donors the concentrations of glucose, tri-
glycerides, urea, total protein, cholesterol, high-den-
sity lipoprotein, low-density lipoprotein and uric acid
were determined with accuracy within the clinically
interesting range. Furthermore, it was shown that ul-

Figure 3 (online colour at:
www.biophotonics-journal.org) He-
matoxylin-eosin stained murine skin
tissue section (a). The FTIR image
of this section before staining con-
sists of more than 65 000 spectra
(b). The colors represent the class
membership of a fuzzy-cluster ana-
lysis (b). IR spectra averaged from
each cluster (c). Same color code in
(b) and (c): tumor ¼ red, yellow and
orange; connective tissue ¼ green
and blue; adnex organs ¼ brown,
skin layers ¼ dark green.
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trafiltration can efficiently reduce fluorescent light
background to improve prediction accuracy such
that the relative coefficient of variation decreased
for glucose and urea in ultrafiltrate by more than a
factor of 2 when compared to serum.

4.8 Osteoarthritis

As vibrational spectroscopy is an analytical techni-
que that can quantify spatial and temporal changes
in matrix composition, it enables characterization of
degenerative cartilage diseases and the efficacy of
potential therapies. Articular cartilage consists of
chondrocytes cells embedded in an extracellular ma-
trix composed predominantly of a hydrophilic pro-
teoglycan gel enmeshed in a dense network of type-
II collagen fibrils. So far, significant complications in
the management of osteoarthritis, a progressively
disabling disease of the joints, have been the inabil-
ity to identify early cartilage changes during devel-
opment of the disease and the lack of techniques to
evaluate the tissue response to therapeutic and tis-
sue-engineering interventions. A recent study eluci-
dated several IR spectroscopic parameters that en-
able evaluation of molecular and compositional
changes in human cartilage with osteoarthritis and in
repair cartilage from animal models [108]. Degen-
erative cartilage was also analyzed using an IR fiber-
optic probe [109]. These preliminary results sug-
gested that it may be possible to monitor subtle
changes related to early cartilage degeneration.
Using an IR fiber-optic probe allows determination
of cartilage integrity in situ during arthroscopy.

5. Conclusions and outlook

IR and Raman spectroscopy can be applied to a
wide variety of sample morphologies such as thin
sections, native tissue, soft tissue, hard tissue and
body fluids. The main advantage of IR spectroscopy
is a shorter acquisition time of spectra due to the in-
terferometric Fourier transform principle that is uti-
lized in combination with multichannel detectors for
rapid acquisition of images. Due to the signal en-
hancement, coherent anti-Stokes Raman spectro-
scopy (CARS) in combination with fast scanning
mirrors offers the perspective to reduce the acquisi-
tion time of Raman images. CARS imaging with vi-
deo-rate microscopy of skin tissue in a live mouse at
subcellular resolution has already successfully been
performed [110]. The main advantage of Raman
spectroscopy is the ability to obtain spectra of aqu-
eous samples because the Raman signals of water
are weak. Multireflective attenuated total reflection

(ATR) sample cells have been developed to collect
IR spectra also from aqueous solutions. With the on-
going progress in light sources, optical components,
detectors and algorithms for data processing, the
number of applications of vibrational spectroscopy
in disease recognition will increase in the future. We
are optimistic that IR and Raman spectroscopic
based methods will soon become important clinical
tools that complement the standard techniques in
various fields of disease recognition.
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